CDMA Systems Capacity Engineering
CDMA Systems Capacity Engineering

Kiseon Kim

Insoo Koo
Contents

Preface ix
Acknowledgments xi

CHAPTER 1
Introduction
1.1 Capacity Issues 6
1.2 Overview and Coverage 9
References 14

CHAPTER 2
System Capacity of CDMA Systems 17
2.1 Introduction 17
2.2 System Model and Analysis 18
2.3 Single Cell CDMA Capacity 20
2.4 Multiple Cell CDMA Capacity 22
2.5 Conclusions 25
References 27

CHAPTER 3
Sensitivity Analysis in CDMA Systems 29
3.1 System Model and System Capacity 30
3.2 The Significance and Definitions of Sensitivity Analysis 32
3.2.1 The Significance of Sensitivity Analysis 32
3.2.2 Basic Definitions of Sensitivity 32
3.3 Sensitivity of System Capacity with Respect to System Reliability in CDMA Cellular Systems 34
3.4 Conclusion 37
References 37

CHAPTER 4
Effect of Traffic Activity on System Capacity 39
4.1 Introduction 39
4.2 Traffic Modeling 40
4.3 Outage Probability and System Capacity 42
4.3.1 AILM 43
4.3.2 SILM 44
CHAPTER 5
A Dynamic Resource Allocation Scheme to Efficiently Utilize System Capacity 55
5.1 Introduction 56
5.2 System Capacity and Remaining Resources 57
5.3 Service Rates for Throughput Maximization 58
5.4 The Proposed Resource Allocation Scheme 61
5.5 Group Selection According to the Parameters of VBR Service Groups 64
5.6 Conclusions 67
References 68

CHAPTER 6
Voice/Data Mixed CDMA Systems with Prioritized Services 69
6.1 Introduction 69
6.2 System and Traffic Models 70
6.2.1 System Model 70
6.2.2 Traffic Model 71
6.3 Erlang Capacity Analysis Under the Proposed CAC Scheme 73
6.4 Numerical Example 79
6.5 Conclusion 84
References 85

CHAPTER 7
Erlang Capacity of CDMA Systems Supporting Multiclass Services 87
7.1 Introduction 87
7.2 System Model and System Capacity 88
7.3 Erlang Capacity for the Multimedia CDMA Systems 91
7.4 Numerical Example 93
7.5 Conclusion 96
References 98

CHAPTER 8
Erlang Capacity Under the Delay Constraint 101
8.1 Introduction 101
8.2 System Model 102
8.3 Markov Chain Model and Blocking Probability 104
8.4 Delay Distribution 108
8.5 Delay Confidence 114
8.6 Erlang Capacity 116
8.7 Conclusions 119
References 120
CHAPTER 9
Multiclass CDMA Systems with a Limited Number of Channel Elements

9.1 Introduction 123
9.2 System Model 124
9.3 Erlang Capacity for the Multimedia CDMA Systems 125
9.4 Numerical Example and Discussion 129
 9.4.1 Single FA Case 129
 9.4.2 Case of Multiple FAs and Graphic Interpretation Method 133
9.5 Conclusion 137
References 139

CHAPTER 10
Approximate Analysis Method for CDMA Systems with Multiple Sectors and Multiple FAs

10.1 Introduction 141
10.2 System Model 142
10.3 Approximate Analysis Method 142
10.4 Calculation Complexity of the Proposed Method 145
10.5 Numerical Example 147
 10.5.1 An Interesting Observation: Two Traffic Parameters to Efficiently Approximate the Call Blocking Probability in CDMA Systems with Three Sectors 148
10.6 Conclusion 151
References 152

CHAPTER 11
Erlang Capacity of Hybrid FDMA/CDMA Systems Supporting Multiclass Services

11.1 Introduction 153
11.2 System Model 155
11.3 Channel Assignment Methods 156
 11.3.1 ICCA 157
 11.3.2 CCAA 157
11.4 Erlang Capacity Analysis 157
 11.4.1 Erlang Capacity Analysis for CCAA 157
 11.4.2 Erlang Capacity Analysis for ICCA 162
11.5 Numerical Example 162
11.6 Conclusion 166
References 167

CHAPTER 12
Erlang Capacity of Multiaccess Systems Supporting Voice and Data Services

12.1 Introduction 169
12.2 System Model 170
12.3 Operation Methods of Multiaccess Systems 172
 12.3.1 Separate Operation Method 173
12.3.2 Common Operation Method 173
12.4 Erlang Capacity Analysis 174
 12.4.1 Erlang Capacity Analysis for Separate Operation Method 174
 12.4.2 Erlang Capacity Analysis for Common Operation Method 177
12.5 Numerical Results 178
12.6 Conclusion 183
References 184

APPENDIX A
The $M/M/\infty$ Model 187

APPENDIX B
The $M/M/m$ Loss Model 189

List of Acronyms 191
About the Authors 193
Index 195