ANALYSIS AND DESIGN
OF ANALOG INTEGRATED
CIRCUITS
Fourth Edition

PAUL R. GRAY
University of California, Berkeley

PAUL J. HURST
University of California, Davis

STEPHEN H. LEWIS
University of California, Davis

ROBERT G. MEYER
University of California, Berkeley

JOHN WILEY & SONS, INC.
New York / Chichester / Weinheim / Brisbane / Singapore / Toronto
Preface

In the 23 years since the publication of the first edition of this book, the field of analog integrated circuits has developed and matured. The initial groundwork was laid in bipolar technology, followed by a rapid evolution of MOS analog integrated circuits. Furthermore, BiCMOS technology (incorporating both bipolar and CMOS devices on one chip) has emerged as a serious contender to the original technologies. A key issue is that CMOS technologies have become dominant in building digital circuits because CMOS digital circuits are smaller and dissipate less power than their bipolar counterparts. To reduce system cost and power dissipation, analog and digital circuits are now often integrated together, providing a strong economic incentive to use CMOS-compatible analog circuits. As a result, an important question in many applications is whether to use pure CMOS or a BiCMOS technology. Although somewhat more expensive to fabricate, BiCMOS allows the designer to use both bipolar and MOS devices to their best advantage, and also allows innovative combinations of the characteristics of both devices. In addition, BiCMOS can reduce the design time by allowing direct use of many existing cells in realizing a given analog circuit function. On the other hand, the main advantage of pure CMOS is that it offers the lowest overall cost. Twenty years ago, CMOS technologies were only fast enough to support applications at audio frequencies. However, the continuing reduction of the minimum feature size in integrated-circuit (IC) technologies has greatly increased the maximum operating frequencies, and CMOS technologies have become fast enough for many new applications as a result. For example, the required bandwidth in video applications is about 4 MHz, requiring bipolar technologies as recently as 15 years ago. Now, however, CMOS can easily accommodate the required bandwidth for video and is even being used for radio-frequency applications.

In this fourth edition, we have combined the consideration of MOS and bipolar circuits into a unified treatment that also includes MOS-bipolar connections made possible by BiCMOS technology. We have written this edition so that instructors can easily select topics related to only CMOS circuits, only bipolar circuits, or a combination of both. We believe that it has become increasingly important for the analog circuit designer to have a thorough appreciation of the similarities and differences between MOS and bipolar devices, and to be able to design with either one where this is appropriate.

Since the SPICE computer analysis program is now readily available to virtually all electrical engineering students and professionals, we have included extensive use of SPICE in this edition, particularly as an integral part of many problems. We have used computer analysis as it is most commonly employed in the engineering design process—both as a more accurate check on hand calculations, and also as a tool to examine complex circuit behavior beyond the scope of hand analysis. In the problem sets, we have also included a number of open-ended design problems to expose the reader to real-world situations where a whole range of circuit solutions may be found to satisfy a given performance specification.

This book is intended to be useful both as a text for students and as a reference book for practicing engineers. For class use, each chapter includes many worked problems; the problem sets at the end of each chapter illustrate the practical applications of the material in the text. All the authors have had extensive industrial experience in IC design as well
as in the teaching of courses on this subject, and this experience is reflected in the choice of text material and in the problem sets.

Although this book is concerned largely with the analysis and design of ICs, a considerable amount of material is also included on applications. In practice, these two subjects are closely linked, and a knowledge of both is essential for designers and users of ICs. The latter compose the larger group by far, and we believe that a working knowledge of IC design is a great advantage to an IC user. This is particularly apparent when the user must choose from among a number of competing designs to satisfy a particular need. An understanding of the IC structure is then useful in evaluating the relative desirability of the different designs under extremes of environment or in the presence of variations in supply voltage. In addition, the IC user is in a much better position to interpret a manufacturer's data if he or she has a working knowledge of the internal operation of the integrated circuit.

The contents of this book stem largely from courses on analog integrated circuits given at the University of California at the Berkeley and Davis campuses. The courses are undergraduate electives and first-year graduate courses. The book is structured so that it can be used as the basic text for a sequence of such courses. The more advanced material is found at the end of each chapter or in an appendix so that a first course in analog integrated circuits can omit this material without loss of continuity. An outline of each chapter is given below together with suggestions for material to be covered in such a first course. It is assumed that the course consists of three hours of lecture per week over a 15-week semester and that the students have a working knowledge of Laplace transforms and frequency-domain circuit analysis. It is also assumed that the students have had an introductory course in electronics so that they are familiar with the principles of transistor operation and with the functioning of simple analog circuits. Unless otherwise stated, each chapter requires three to four lecture hours to cover.

Chapter 1 contains a summary of bipolar transistor and MOS transistor device physics. We suggest spending one week on selected topics from this chapter, the choice of topics depending on the background of the students. The material of Chapters 1 and 2 is quite important in IC design because there is significant interaction between circuit and device design, as will be seen in later chapters. A thorough understanding of the influence of device fabrication on device characteristics is essential.

Chapter 2 is concerned with the technology of IC fabrication and is largely descriptive. One lecture on this material should suffice if the students are assigned to read the chapter.

Chapter 3 deals with the characteristics of elementary transistor connections. The material on one-transistor amplifiers should be a review for students at the senior and graduate levels and can be assigned as reading. The section on two-transistor amplifiers can be covered in about three hours, with greatest emphasis on differential pairs. The material on device mismatch effects in differential amplifiers can be covered to the extent that time allows.

In Chapter 4, the important topics of current mirrors and active loads are considered. These configurations are basic building blocks in modern analog IC design, and this material should be covered in full, with the exception of the material on band-gap references and the material in the appendices.

Chapter 5 is concerned with output stages and methods of delivering output power to a load. Integrated-circuit realizations of Class A, Class B, and Class AB output stages are described, as well as methods of output-stage protection. A selection of topics from this chapter should be covered.

Chapter 6 deals with the design of operational amplifiers (op amps). Illustrative examples of dc and ac analysis in both MOS and bipolar op amps are performed in detail, and the limitations of the basic op amps are described. The design of op amps with improved
characteristics in both MOS and bipolar technologies is considered. This key chapter on amplifier design requires at least six hours.

In Chapter 7, the frequency response of amplifiers is considered. The zero-value time-constant technique is introduced for the calculations of the -3-dB frequency of complex circuits. The material of this chapter should be considered in full.

Chapter 8 describes the analysis of feedback circuits. Two different types of analysis are presented: two-port and return-ratio analyses. Either approach should be covered in full with the section on voltage regulators assigned as reading.

Chapter 9 deals with the frequency response and stability of feedback circuits and should be covered up to the section on root locus. Time may not permit a detailed discussion of root locus, but some introduction to this topic can be given.

In a 15-week semester, coverage of the above material leaves about two weeks for Chapters 10, 11, and 12. A selection of topics from these chapters can be chosen as follows. Chapter 10 deals with nonlinear analog circuits, and portions of this chapter up to Section 10.3 could be covered in a first course. Chapter 11 is a comprehensive treatment of noise in integrated circuits, and material up to and including Section 11.4 is suitable. Chapter 12 describes fully differential operational amplifiers and common-mode feedback and may be best suited for a second course.

We are grateful to the following colleagues for their suggestions for and/or evaluation of this edition: R. Jacob Baker, Bernhard E. Boser, A. Paul Brokaw, John N. Churchill, David W. Cline, Ozan E. Erdoğan, John W. Fattaruso, Weinan Gao, Edwin W. Greeneich, Alex Gros-Balázsz, Tünde Gyurics, Ward J. Helms, Timothy H. Hu, Shafiq M. Jamal, John P. Keane, Haideh Khorramabadi, Pak-Kim Lau, Thomas W. Matthews, Krishnaswamy Nagaraj, Khalil Najafi, Borivoje Nikolić, Robert A. Pease, Lawrence T. Pileggi, Edgar Sánchez-Sinencio, Bang-Sup Song, Richard R. Spencer, Eric J. Swanson, Andrew Y. J. Szeto, Yannis P. Tsividis, Srikanth Vaidyanathan, T. R. Viswanathan, Chorng-Kuang Wang, and Dong Wang. We are also grateful to Kenneth C. Dyer for allowing us to use on the cover of this book a die photograph of an integrated circuit he designed and to Zoe Marlowe for her assistance with word processing. Finally, we would like to thank the people at Wiley and Publication Services for their efforts in producing this fourth edition.

The material in this book has been greatly influenced by our association with Donald O. Pederson, and we acknowledge his contributions.

Berkeley and Davis, CA, 2001

Paul R. Gray
Paul J. Hurst
Stephen H. Lewis
Robert G. Meyer
CHAPTER 1
Models for Integrated-Circuit Active Devices 1

1.1 Introduction 1

1.2 Depletion Region of a pn Junction 1
1.2.1 Depletion-Region Capacitance 5
1.2.2 Junction Breakdown 6

1.3 Large-Signal Behavior of Bipolar Transistors 8
1.3.1 Large-Signal Models in the Forward-Active Region 9
1.3.2 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region 14
1.3.3 Saturation and Inverse Active Regions 16
1.3.4 Transistor Breakdown Voltages 20
1.3.5 Dependence of Transistor Current Gain β_F on Operating Conditions 23

1.4 Small-Signal Models of Bipolar Transistors 26
1.4.1 Transconductance 27
1.4.2 Base-Charging Capacitance 28
1.4.3 Input Resistance 29
1.4.4 Output Resistance 29
1.4.5 Basic Small-Signal Model of the Bipolar Transistor 30
1.4.6 Collector-Base Resistance 30
1.4.7 Parasitic Elements in the Small-Signal Model 31
1.4.8 Specification of Transistor Frequency Response 34

1.5 Large Signal Behavior of Metal-Oxide-Semiconductor Field-Effect Transistors 38
1.5.1 Transfer Characteristics of MOS Devices 38

1.5.2 Comparison of Operating Regions of Bipolar and MOS Transistors 45
1.5.3 Decomposition of Gate-Source Voltage 47
1.5.4 Threshold Temperature Dependence 47
1.5.5 MOS Device Voltage Limitations 48

1.6 Small-Signal Models of the MOS Transistors 49
1.6.1 Transconductance 50
1.6.2 Intrinsic Gate-Source and Gate-Drain Capacitance 51
1.6.3 Input Resistance 52
1.6.4 Output Resistance 52
1.6.5 Basic Small-Signal Model of the MOS Transistor 52
1.6.6 Body Transconductance 53
1.6.7 Parasitic Elements in the Small-Signal Model 54
1.6.8 MOS Transistor Frequency Response 55

1.7 Short-Channel Effects in MOS Transistors 58
1.7.1 Velocity Saturation from the Horizontal Field 59
1.7.2 Transconductance and Transition Frequency 63
1.7.3 Mobility Degradation from the Vertical Field 65

1.8 Weak Inversion in MOS Transistors 65
1.8.1 Drain Current in Weak Inversion 66
1.8.2 Transconductance and Transition Frequency in Weak Inversion 68

1.9 Substrate Current Flow in MOS Transistors 71

A.1.1 Summary of Active-Device Parameters 73
CHAPTER 2
Bipolar, MOS, and BiCMOS
Integrated-Circuit Technology 78

2.1 Introduction 78

2.2 Basic Processes in Integrated-Circuit Fabrication 79
 2.2.1 Electrical Resistivity of Silicon 79
 2.2.2 Solid-State Diffusion 80
 2.2.3 Electrical Properties of Diffused Layers 82
 2.2.4 Photolithography 84
 2.2.5 Epitaxial Growth 85
 2.2.6 Ion Implantation 87
 2.2.7 Local Oxidation 87
 2.2.8 Polysilicon Deposition 87

2.3 High-Voltage Bipolar Integrated-Circuit Fabrication 88

2.4 Advanced Bipolar Integrated-Circuit Fabrication 92

2.5 Active Devices in Bipolar Analog Integrated Circuits 95
 2.5.1 Integrated-Circuit npn Transistor 96
 2.5.2 Integrated-Circuit pnp Transistors 107

2.6 Passive Components in Bipolar Integrated Circuits 115
 2.6.1 Diffused Resistors 115
 2.6.2 Epitaxial and Epitaxial Pinch Resistors 119
 2.6.3 Integrated-Circuit Capacitors 120
 2.6.4 Zener Diodes 121
 2.6.5 Junction Diodes 122

2.7 Modifications to the Basic Bipolar Process 123
 2.7.1 Dielectric Isolation 123
 2.7.2 Compatible Processing for High-Performance Active Devices 124
 2.7.3 High-Performance Passive Components 127

2.8 MOS Integrated-Circuit Fabrication 127

2.9 Active Devices in MOS Integrated Circuits 131

2.9.1 n-Channel Transistors 131
2.9.2 p-Channel Transistors 141
2.9.3 Depletion Devices 142
2.9.4 Bipolar Transistors 142

2.10 Passive Components in MOS Technology 144
 2.10.1 Resistors 144
 2.10.2 Capacitors in MOS Technology 145
 2.10.3 Latchup in CMOS Technology 148

2.11 BiCMOS Technology 150

2.12 Heterojunction Bipolar Transistors 152

2.13 Interconnect Delay 153

2.14 Economics of Integrated-Circuit Fabrication 154
 2.14.1 Yield Considerations in Integrated-Circuit Fabrication 154
 2.14.2 Cost Considerations in Integrated-Circuit Fabrication 157

2.15 Packaging Considerations for Integrated Circuits 159
 2.15.1 Maximum Power Dissipation 159
 2.15.2 Reliability Considerations in Integrated-Circuit Packaging 162

A.2.1 SPICE Model-Parameter Files 163

CHAPTER 3
Single-Transistor and Multiple-Transistor Amplifiers 170

3.1 Device Model Selection for Approximate Analysis of Analog Circuits 171

3.2 Two-Port Modeling of Amplifiers 172

3.3 Basic Single-Transistor Amplifier Stages 174
 3.3.1 Common-Emitter Configuration 175
 3.3.2 Common-Source Configuration 179
 3.3.3 Common-Base Configuration 183
 3.3.4 Common-Gate Configuration 186
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5</td>
<td>Common-Base and Common-Gate Configurations with Finite r_o 188</td>
</tr>
<tr>
<td>3.3.5.1</td>
<td>Common-Base and Common-Gate Input Resistance 188</td>
</tr>
<tr>
<td>3.3.5.2</td>
<td>Common-Base and Common-Gate Output Resistance 190</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Common-Collector Configuration (Emitter Follower) 191</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Common-Drain Configuration (Source Follower) 195</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Common-Emitter Amplifier with Emitter Degeneration 197</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Common-Source Amplifier with Source Degeneration 200</td>
</tr>
<tr>
<td>3.4</td>
<td>Multiple-Transistor Amplifier Stages 202</td>
</tr>
<tr>
<td>3.4.1</td>
<td>The CC-CE, CC-CC, and Darlington Configurations 202</td>
</tr>
<tr>
<td>3.4.2</td>
<td>The Cascode Configuration 206</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>The Bipolar Cascode 206</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>The MOS Cascode 208</td>
</tr>
<tr>
<td>3.4.3</td>
<td>The Active Cascode 211</td>
</tr>
<tr>
<td>3.4.4</td>
<td>The Super Source Follower 213</td>
</tr>
<tr>
<td>3.5</td>
<td>Differential Pairs 215</td>
</tr>
<tr>
<td>3.5.1</td>
<td>The dc Transfer Characteristic of an Emitter-Coupled Pair 215</td>
</tr>
<tr>
<td>3.5.2</td>
<td>The dc Transfer Characteristic with Emitter Degeneration 217</td>
</tr>
<tr>
<td>3.5.3</td>
<td>The dc Transfer Characteristic of a Source-Coupled Pair 218</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Introduction to the Small-Signal Analysis of Differential Amplifiers 221</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Small-Signal Characteristics of Balanced Differential Amplifiers 224</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Device Mismatch Effects in Differential Amplifiers 231</td>
</tr>
<tr>
<td>3.5.6.1</td>
<td>Input Offset Voltage and Current 231</td>
</tr>
<tr>
<td>3.5.6.2</td>
<td>Input Offset Voltage of the Emitter-Coupled Pair 232</td>
</tr>
<tr>
<td>3.5.6.3</td>
<td>Offset Voltage of the Emitter-Coupled Pair: Approximate Analysis 232</td>
</tr>
<tr>
<td>3.5.6.4</td>
<td>Offset Voltage Drift in the Emitter-Coupled Pair 234</td>
</tr>
<tr>
<td>3.5.6.5</td>
<td>Input Offset Current of the Emitter-Coupled Pair 235</td>
</tr>
<tr>
<td>3.5.6.6</td>
<td>Input Offset Voltage of the Source-Coupled Pair 236</td>
</tr>
<tr>
<td>3.5.6.7</td>
<td>Offset Voltage of the Source-Coupled Pair: Approximate Analysis 236</td>
</tr>
<tr>
<td>3.5.6.8</td>
<td>Offset Voltage Drift in the Source-Coupled Pair 238</td>
</tr>
<tr>
<td>3.5.6.9</td>
<td>Small-Signal Characteristics of Unbalanced Differential Amplifiers 238</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Elementary Statistics and the Gaussian Distribution 246</td>
</tr>
</tbody>
</table>

CHAPTER 4
Current Mirrors, Active Loads, and References 253

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction 253</td>
</tr>
<tr>
<td>4.2</td>
<td>Current Mirrors 253</td>
</tr>
<tr>
<td>4.2.1</td>
<td>General Properties 253</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Simple Current Mirror 255</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Bipolar 255</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>MOS 257</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Simple Current Mirror with Beta Helper 260</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Bipolar 260</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>MOS 262</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Simple Current Mirror with Degeneration 262</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Bipolar 262</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>MOS 263</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Cascode Current Mirror 263</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Bipolar 263</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>MOS 266</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Wilson Current Mirror 274</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>Bipolar 274</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>MOS 277</td>
</tr>
<tr>
<td>4.3</td>
<td>Active Loads 278</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Motivation 278</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Common-Emitter/Common-Source Amplifier with Complementary Load 279</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Common-Emitter/Common-Source Amplifier with Depletion Load 282</td>
</tr>
</tbody>
</table>
4.3.4 Common-Emitter/Common-Source Amplifier with Diode-Connected Load 284

4.3.5 Differential Pair with Current-Mirror Load 287
4.3.5.1 Large-Signal Analysis 287
4.3.5.2 Small-Signal Analysis 288
4.3.5.3 Common-Mode Rejection Ratio 293

4.4 Voltage and Current References 299
4.4.1 Low-Current Biasing 299
4.4.1.1 Bipolar Widlar Current Source 299
4.4.1.2 MOS Widlar Current Source 302
4.4.1.3 Bipolar Peaking Current Source 303
4.4.1.4 MOS Peaking Current Source 304
4.4.2 Supply-Insensitive Biasing 306
4.4.2.1 Widlar Current Sources 306
4.4.2.2 Current Sources Using Other Voltage Standards 307
4.4.2.3 Self Biasing 309
4.4.3 Temperature-Insensitive Biasing 317
4.4.3.1 Band-Gap-Referenced Bias Circuits in Bipolar Technology 317
4.4.3.2 Band-Gap-Referenced Bias Circuits in CMOS Technology 323

A.4.1 Matching Considerations in Current Mirrors 327
A.4.1.1 Bipolar 327
A.4.1.2 MOS 329

A.4.2 Input Offset Voltage of Differential Pair with Active Load 332
A.4.2.1 Bipolar 332
A.4.2.2 MOS 334

CHAPTER 5
Output Stages 344
5.1 Introduction 344

5.2 The Emitter Follower As an Output Stage 344
5.2.1 Transfer Characteristics of the Emitter-Follower 344
5.2.2 Power Output and Efficiency 347
5.2.3 Emitter-Follower Drive Requirements 354
5.2.4 Small-Signal Properties of the Emitter Follower 355

5.3 The Source Follower As an Output Stage 356
5.3.1 Transfer Characteristics of the Source Follower 356
5.3.2 Distortion in the Source Follower 358

5.4 Class B Push–Pull Output Stage 362
5.4.1 Transfer Characteristic of the Class B Stage 363
5.4.2 Power Output and Efficiency of the Class B Stage 365
5.4.3 Practical Realizations of Class B Complementary Output Stages 369
5.4.4 All-npn Class B Output Stage 376
5.4.5 Quasi-Complementary Output Stages 379
5.4.6 Overload Protection 380

5.5 CMOS Class AB Output Stages 382
5.5.1 Common-Drain Configuration 383
5.5.2 Common-Source Configuration with Error Amplifiers 384
5.5.3 Alternative Configurations 391
5.5.3.1 Combined Common-Drain Common-Source Configuration 391
5.5.3.2 Combined Common-Drain Common-Source Configuration with High Swing 393
5.5.3.3 Parallel Common-Source Configuration 394

CHAPTER 6
Operational Amplifiers with Single-Ended Outputs 404
6.1 Applications of Operational Amplifiers 405
Contents

6.1 Basic Feedback Concepts 405
6.1.1 Basic Feedback Concepts 405
6.1.2 Inverting Amplifier 406
6.1.3 Noninverting Amplifier 408
6.1.4 Differential Amplifier 408
6.1.5 Nonlinear Analog Operations 409
6.1.6 Integrator, Differentiator 410
6.1.7 Internal Amplifiers 411
6.1.7.1 Switched-Capacitor Amplifier 411
6.1.7.2 Switched-Capacitor Integrator 416
6.2 Deviations from Ideality in Real Operational Amplifiers 419
6.2.1 Input Bias Current 419
6.2.2 Input Offset Current 420
6.2.3 Input Offset Voltage 421
6.2.4 Common-Mode Input Range 421
6.2.5 Common-Mode Rejection Ratio (CMRR) 421
6.2.6 Power-Supply Rejection Ratio (PSRR) 422
6.2.7 Input Resistance 424
6.2.8 Output Resistance 424
6.2.9 Frequency Response 424
6.2.10 Operational-Amplifier Equivalent Circuit 424
6.3 Basic Two-Stage MOS Operational Amplifiers 425
6.3.1 Input Resistance, Output Resistance, and Open-Circuit Voltage Gain 426
6.3.2 Output Swing 428
6.3.3 Input Offset Voltage 428
6.3.4 Common-Mode Rejection Ratio 431
6.3.5 Common-Mode Input Range 432
6.3.6 Power-Supply Rejection Ratio (PSRR) 434
6.3.7 Effect of Overdrive Voltages 439
6.3.8 Layout Considerations 439
6.4 Two-Stage MOS Operational Amplifiers with Cascodes 442
6.5 MOS Telescopic-Cascode Operational Amplifiers 444
6.6 MOS Folded-Cascode Operational Amplifiers 446
6.7 MOS Active-Cascode Operational Amplifiers 450
6.8 Bipolar Operational Amplifiers 453
6.8.1 The dc Analysis of the 741 Operational Amplifier 456
6.8.2 Small-Signal Analysis of the 741 Operational Amplifier 461
6.8.3 Input Offset Voltage, Input Offset Current, and Common-Mode Rejection Ratio of the 741 470
6.9 Design Considerations for Bipolar Monolithic Operational Amplifiers 472
6.9.1 Design of Low-Drift Operational Amplifiers 474
6.9.2 Design of Low-Input-Current Operational Amplifiers 476

Chapter 7

Frequency Response of Integrated Circuits 488
7.1 Introduction 488
7.2 Single-Stage Amplifiers 488
7.2.1 Single-Stage Voltage Amplifiers and the Miller Effect 488
7.2.1.1 The Bipolar Differential Amplifier: Differential-Mode Gain 493
7.2.1.2 The MOS Differential Amplifier: Differential-Mode Gain 496
7.2.2 Frequency Response of the Common-Mode Gain for a Differential Amplifier 499
7.2.3 Frequency Response of Voltage Buffers 502
7.2.3.1 Frequency Response of the Emitter Follower 503
7.2.3.2 Frequency Response of the Source Follower 509
7.2.4 Frequency Response of Current Buffers 511
7.2.4.1 Common-Base-Amplifier Frequency Response 514
7.2.4.2 Common-Gate-Amplifier Frequency Response 515
7.3 Multistage Amplifier Frequency Response 516
 7.3.1 Dominant-Pole Approximation 516
 7.3.2 Zero-Value Time Constant Analysis 517
 7.3.3 Cascode Voltage-Amplifier Frequency Response 522
 7.3.4 Cascode Frequency Response 525
 7.3.5 Frequency Response of a Current Mirror Loading a Differential Pair 532
 7.3.6 Short-Circuit Time Constants 533

7.4 Analysis of the Frequency Response of the 741 Op Amp 537
 7.4.1 High-Frequency Equivalent Circuit of the 741 537
 7.4.2 Calculation of the -3-dB Frequency of the 741 538
 7.4.3 Nondominant Poles of the 741 540

7.5 Relation Between Frequency Response and Time Response 542

CHAPTER 8 Feedback

8.1 Ideal Feedback Equation 553
8.2 Gain Sensitivity 555
8.3 Effect of Negative Feedback on Distortion 555
8.4 Feedback Configurations 557
 8.4.1 Series-Shunt Feedback 557
 8.4.2 Shunt-Shunt Feedback 560
 8.4.3 Shunt-Series Feedback 561
 8.4.4 Series-Series Feedback 562
8.5 Practical Configurations and the Effect of Loading 563
 8.5.1 Shunt-Shunt Feedback 563
 8.5.2 Series-Series Feedback 569
 8.5.3 Series-Shunt Feedback 579
 8.5.4 Shunt-Series Feedback 583
 8.5.5 Summary 587
8.6 Single-Stage Feedback 587
 8.6.1 Local Series Feedback 587

8.6.2 Local Shunt Feedback 591

8.7 The Voltage Regulator as a Feedback Circuit 593
8.8 Feedback Circuit Analysis Using Return Ratio 599
 8.8.1 Closed-Loop Gain Using Return Ratio 601
 8.8.2 Closed-Loop Impedance Formula Using Return Ratio 607
 8.8.3 Summary—Return-Ratio Analysis 612
8.9 Modeling Input and Output Ports in Feedback Circuits 613

CHAPTER 9 Frequency Response and Stability of Feedback Amplifiers 624

9.1 Introduction 624
9.2 Relation Between Gain and Bandwidth in Feedback Amplifiers 624
9.3 Instability and the Nyquist Criterion 626
9.4 Compensation 633
 9.4.1 Theory of Compensation 633
 9.4.2 Methods of Compensation 637
 9.4.3 Two-Stage MOS Amplifier Compensation 644
 9.4.4 Compensation of Single-Stage CMOS OP Amps 652
 9.4.5 Nested Miller Compensation 656
9.5 Root-Locus Techniques 664
 9.5.1 Root Locus for a Three-Pole Transfer Function 664
 9.5.2 Rules for Root-Locus Construction 667
 9.5.3 Root Locus for Dominant-Pole Compensation 675
 9.5.4 Root Locus for Feedback-Zero Compensation 676
9.6 Slew Rate 680
 9.6.1 Origin of Slew-Rate Limitations 680
 9.6.2 Methods of Improving Slew-Rate 684
Contents

9.6.3 Improving Slew-Rate in Bipolar Op Amps 685
9.6.4 Improving Slew-Rate in MOS Op Amps 686
9.6.5 Effect of Slew-Rate Limitations on Large-Signal Sinusoidal Performance 690

A.9.1 Analysis in Terms of Return-Ratio Parameters 691
A.9.2 Roots of a Quadratic Equation 692

CHAPTER 10
Nonlinear Analog Circuits 702
10.1 Introduction 702
10.2 Precision Rectification 702
10.3 Analog Multipliers Employing the Bipolar Transistor 708
 10.3.1 The Emitter-Coupled Pair as a Simple Multiplier 708
 10.3.2 The dc Analysis of the Gilbert Multiplier Cell 710
 10.3.3 The Gilbert Cell as an Analog Multiplier 712
 10.3.4 A Complete Analog Multiplier 715
 10.3.5 The Gilbert Multiplier Cell as a Balanced Modulator and Phase Detector 716
10.4 Phase-Locked Loops (PLL) 720
 10.4.1 Phase-Locked Loop Concepts 720
 10.4.2 The Phase-Locked Loop in the Locked Condition 722
 10.4.3 Integrated-Circuit Phase-Locked Loops 731
 10.4.4 Analysis of the 560B Monolithic Phase-Locked Loop 735
10.5 Nonlinear Function Symbols 743

CHAPTER 11
Noise in Integrated Circuits 748
11.1 Introduction 748
11.2 Sources of Noise 748
11.2.1 Shot Noise 748
11.2.2 Thermal Noise 752
11.2.3 Flicker Noise (1/f Noise) 753
11.2.4 Burst Noise (Popcorn Noise) 754
11.2.5 Avalanche Noise 755
11.3 Noise Models of Integrated-Circuit Components 756
 11.3.1 Junction Diode 756
 11.3.2 Bipolar Transistor 757
 11.3.3 MOS Transistor 758
 11.3.4 Resistors 759
 11.3.5 Capacitors and Inductors 759
11.4 Circuit Noise Calculations 760
 11.4.1 Bipolar Transistor Noise Performance 762
 11.4.2 Equivalent Input Noise and the Minimum Detectable Signal 766
11.5 Equivalent Input Noise Generators 768
 11.5.1 Bipolar Transistor Noise Generators 768
 11.5.2 MOS Transistor Noise Generators 773
11.6 Effect of Feedback on Noise Performance 776
 11.6.1 Effect of Ideal Feedback on Noise Performance 776
 11.6.2 Effect of Practical Feedback on Noise Performance 776
11.7 Noise Performance of Other Transistor Configurations 783
 11.7.1 Common-Base Stage Noise Performance 783
 11.7.2 Emitter-Follower Noise Performance 784
 11.7.3 Differential-Pair Noise Performance 785
11.8 Noise in Operational Amplifiers 788
11.9 Noise Bandwidth 794
11.10 Noise Figure and Noise Temperature 799
 11.10.1 Noise Figure 799
 11.10.2 Noise Temperature 802